Войти
Спортивный клуб - Skrodina
  • Жена Стаса Михайлова: трагедии, измены и любовь как награда Инна канчельскис девичья фамилия
  • Что такое КХЛ: характеристика, команды, структура сезона, трофеи
  • Очень краткое содержание рассказа очем плачут лошади
  • Хоккей, Проброс шайбы и положение хоккеиста «вне игры» Правила игры в хоккей с шайбой
  • Хоккей: история возникновения и развития Какие страны играют в хоккей
  • Трупы на эвересте Люди умершие на эвересте
  • Искусственной вентиляции легких в режиме. Виды искусственной вентиляции легких (ИВЛ)

    Искусственной вентиляции легких в режиме. Виды искусственной вентиляции легких (ИВЛ)

    лёгких


    Глава 1. ИВЛ в современной интенсивной терапии . 3

    Терминология. 4

    Глава 2. Основные принципы современной респираторной терапии. 5

    Логика врача. 5

    Параметры дыхания пациента, их значение для подбора оптимального режима ИВЛ и диагностики состояния респираторной системы.. 5

    Особенности современных аппаратов ИВЛ, подход к детальному описанию методов и режимов 7

    Глава 3. Формирование дыхательного цикла. 8

    Дыхательный цикл. 8

    Принудительные методы вентиляции. 9

    Метод вентиляции - Volume control ventilation - вентиляция с управляемым объемом 10

    Метод вентиляции - Pressure control ventilation - «вентиляция с управляемым давлением» 15

    Спонтанный дыхательный цикл. 20

    Вспомогательные методы вентиляции. 21

    Метод вентиляции - Pressure support ventilation - вентиляция с поддержкой давлением 22

    Опции РЕЕР/СРАР (Positive End-Expiratory Pressure /Continius Positive Airway Pressure - Положительное давление на выдохе/постоянное положительное давление) 24

    Глава 4. Формирование ритма вентиляции. 26

    Триггер. 27

    Режимы формирования ритма вентиляции. 29

    Режимы CMV(Continius Mandatory Ventilation) - Постоянная принудительная вентиляция 29

    Режим (S)CMV (Synchronized Continius Mandatory Ventilation) -Синхронизированная постоянная принудительная вентиляция 29

    Режим Spont - спонтанная вентиляция. 30

    Режим SIMV (Synchronized Intermittent Mandatory Ventilation) - Синхронизированная Перемежающаяся Принудительная вентиляции. 31


    Сравнение режимов (s)cmv и simv. 32

    Глава 5 . Дополнительные методы и режимы вентиляции. 33

    Опция Sigh - Вздох. 33

    Режим IRV-intensive ratio ventilation- вентиляция с обратным соотношением вдох/выдох 33

    Режим BiPAP-BIFASICpositive airway ressure -вентиляция с двумя уровнями сдвумя дпум уровнями постоянного положительного давления. 34

    Метод Pressure limited ventilation (PLV) - (объемная) вентиляция с ограничением давления 36

    Apnoe Ventilation - вентиляция апноэ. 37

    VAPS-volume assured pressure support -вентиляция с поддержкой давлением с гарантированным, дыхательным объемом 38

    Глава 6. Клинический пример использования графического мониторинга для оценки адекватности ИВЛ 39

    Заключение. 42

    Глава 1. ИВЛ в современной интенсивной терапии

    Искусственная вентиляция легких - одно из важнейших лечебных мероприятий в современной интенсивной терапии. Показания к проведению ИВЛ в наше время значительно расширились в связи с появлением современной аппаратуры, позволяющей, с одной стороны, проводить ИВЛ с наименьшей травматичностью для респираторной системы пациента (контроль давления в дыхательных путях, адекватное увлажнение.и подогрев дыхательной смеси), с другой - имеющей режимы плавного уменьшения респираторной поддержки, облегчающие перевод больного на самостоятельное дыхание.

    Можно выделить несколько типов клинических ситуаций, требующих проведения ИВЛ:

    Поражение непосредственно респираторной системы пациента вентиляционная дыхательная недостаточность - тяжелые пневмо нии, травмы груди с повреждением реберного каркаса, респираторный дистресс-синдром взрослых.

    Особенности этих ситуаций в том, что пациенты чаще всего в сознании. Дыхательный центр больного способен регулировать параметры дыхания. Следовательно, требуются преимущественно вспомогательные методы ИВЛ (Pressure support), направленные на уменьшение работы дыхания.

    Показаниями для начала ИВЛ служит обычно нарастание одышки, уменьшение дыхательного объема, снижение РаО2 Минутный объем дыхания (ориентир - РаСО2) может быть как снижен (гиповентиляция) – в стадии декомпенсации, так и повышен (гиповентиляция) - в стадии субкомпенсании. Предпочтительнее начинать ИВЛ в стадии субкомпенсацпии.

    2. Нарушения нервной регуляции дыхания, центральные (ЧМТ и ОНМК с поражением ствола мозга, отравление опиатами) и периферичес кие (применение миорелаксантов). В этих ситуациях требуется полное замещение регуляторной функции дыхательного центра, применение при нудительных методов ИВЛ с адекватным мониторингом газов"артерналыюй крови.

    Клиническими показаниями к началу ИВЛ служит урежение частоты дыхания (вплоть до апноэ), гиповентиляция.

    3. ИВЛ в связи с внутричерепной гипертензией (ЧМТ, ОНМК,гипоксия).

    Функция внешнего дыхания больного может быть, не нарушена! Минутным объем дыхания, частота дыхания, дыхательный объем, Р"аСО2, в норме, однако пациенту необходимо проиеденпе ИВЛ в режиме умеренной гипо-вентнляции с целью снижения РаС02 до 25-30 мм Hg

    Клиническими показаниями к началу ИВЛ будут признаки внутричерной гипертензнии- угнетение сознания до уровня сопора и комы, судорожным синдром, отрицательная неврологическая динамика, а также ранний (до 1 сут.) послеоперационный и посттравматический период. В раннем периоде лечения применяются принудительные режимы вентиляции, и дальнейшем - выбор режима ИВЛ основывается на данных мони торинга внутричерепного давления.


    4. ИВЛ в связи с крайне тяжелым общим состоявшем больного -травматический, иифекционно-токсический шок, синдром полиорганной недостаточности, сепсис. Собственно респираторная система пациента может быть не поражена, регуляция дыхания в норме, однако пациенту требуется проведение ИВЛ с целью увеличения доставки кислорода с од новременным снижением его затрат на дыхание.

    Клиническими показаниями к началу ИВЛ будут все признаки общем тяжести состояния - объем перенесенной травмы, операции и кровопотери, выраженная продолжительная гипотония, выраженная гипертермия, клинические и лабораторные признаки тяжелой интоксикации. Чаще используются принудительные режимы вентиляции несмотря на уровень сознания больного, при необходимости вводятся седатнвпые препараты.

    Таким образом, необходимость ИВЛ не всегда связана напрямую с нарушением функции внешнего дыхания. Критерии для начала и прекращения ИВЛ до сих пор широко обсуждаются в литературе, проблема остается не до конца решенной.

    Современная дыхательная аппаратура, снабженная микропроцессорным управлением, реализует большое количество методов и режимов, используемых в перечисленных клинических ситуациях. Очевидно, что детальное представление врача о том, как функционирует респиратор в том или ином режиме - основа успешного лечения и гарантия безопасности пациента.

    Терминология

    В связи с тем, что большинство современных дыхательных аппаратов -западноевропейского и американского производства и большинство литера-турных источников по этой теме опубликовано на английском языке , возникает необходимость адаптации англоязычных терминов для русскоязычного пользователя. Попытки перевода английских понятий на русский язык нередко искажают их смысл и препятствуют их пониманию. Особенно трудны для восприятия созданные из русского перевода аббревиатуры . Поэтому и данном руководстве будут использоваться только англоязычные аббревиатуры, для понимания они будут расшифрованы на английском и дословно переведены па русский. В качестве базового для однозначной идентификации того или иного понятия предлагается использовать англоязычный термин и его аббревиатуру. Русский перевод будет считаться дополнительным. Поэтому частое использование англоязычных терминов имеет целью преодолеть терминологическую путаницу и облегчить в дальнейшем эксплуатацию дыхательной аппаратуры и взаимодействие специалистов.

    Дискуссия по поводу точности и общепринятости русских переводов и аббревиатур представляется нецелесообразной.

    В литературе нет терминологического единства относительного самого понятия «режим ИВЛ». Дело в том, что некоторые понятия (volume control, pressure control, pressure support) касаются только способа формирования отдельного дыхательного цикла, другие - CMV, (s)CMV, SIMV -отражают принципы формирования ритма вентиляции. Понятия «вентиляция по давлению» и «вентиляция по объему» принято обозначать как два «метода» (mode) (Точный перевод-«способ». «вид» Однако для удобства переведем «mode» как метод вентиляции)

    При этом имеется ввиду способ формирования отдельного дыхательного цикла. Предлагается все виды дыхательных циклов, как принудительных, так и вспомогательных обозначать как «методы вентиляции», под понятием «режим» подразумевать принцип формирования ритма вентиляции.

    Таким образом, полное описание РЕЖИМА РЕСПИРАТОРНОЙ ТЕРАПИИ у конкретного больного должно выглядеть примерно так:

    «режим SIMV , триггер «по давлению», чувствительность -1 см Н20, метод вентиляции Volume control + Pressure Support (VC - 10 в I мин (пиковый поток па вдохе - 65 л/мин, время вдоха -0.9 сек., форма кривой потока - deceleration ), PSV + 20 см Н2,О, уровень РЕЕР/СРАР+ 7см H 2 O , FiO 2,- 0.4, данные мониторинга- МОД - 11.5-12 л/мин, ЧД - 1 8 в 1 мин, дыхательный объем Pressure support -цикл-400-460 мл.»

    Подпонятие «метод вентиляции» подходят также современные «интеллектуальные» виды вентиляции - Pressure limited ventilation, BiPAP, VAPS.

    Глава 2. Основные принципы современной респираторной терапии

    Логика врача

    Пожалуй, наиболее важным моментом в осмыслении принципов со временной респираторной терапии представляется искоренение известного жаргонного выражения реаниматологов «больной не синхронен с аппа ратом!». Прямое следствие этого подхода - массивное применение седа-тивных препаратов, т.е. подавление собственной регуляторной системы пациента. Необходимо осознать, что сопротивление пациента работе венти лятора (десинхронизация системы «ПАЦИЕНТ - респиратор») свиде тельствует о несоответствии параметров работы респиратора потребностям пациента.

    Принципиальным физиологическим эффектом искусственной вентиляции легких , в отличие от акта самостоятельного дыхания, является положительное давление в дыхательных путях во время дыхательного цикла. Положительное давление имеет ряд преимуществ при газообмене, включая рекрутинг периферических альвеол, увеличение функциональной остаточной емкости, улучшение вентиляционно-перфузионного соотношения и снижение внутрилегочного шунтирования крови. Отрицательные же эффекты заключаются в возможности появления баротравмы и респираторного повреждения легких при использовании больших дыхательных объемов или давления на вдохе, а также потенциальном снижении сердечного выброса при увеличении среднего внутригрудного давления. В общем, некоторая степень позитивных и негативных эффектов искусственной вентиляции легких свойственна всем используемым режимам. Эта величина неодинакова у различных режимов, что обусловлено уровнем положительного давления на вдохе.

    Принудительные (Control-mode, CV) и вспомогательные (assist/control-mode ventilation, ACV) режимы представляют собой циклические, объемные режимы, доставляющие фиксированный дыхательный объем с установленным минимальным числом вдохов и скоростью дыхательного потока. Дыхательные попытки пациента при первом варианте не являются триггерами для начала аппаратного вдоха. При CV, вентилятор не добавляет вдохов, несмотря на попытки пациента. Учитывая безопасность и комфорт вспомогательных режимов вентиляции, CV не должен применяться рутинно.

    Режим ACV позволяет по запросу больного в виде дыхательных попыток, инициировать дополнительный аппаратный вдох. В зависимости от состояния пациента, а также чувствительности и типа (потоковый или по давлению) триггера вдоха, режим позволяет пациенту создавать свой ритм дыхания и дыхательный объем (с установлением минимального количества вдохов в качестве системы защиты). Использование ACV типично у больных с паралитическими состояниями (при использовании мышечных релаксантов или при паралитических нейромышечных заболеваниях), требующих большого количества седативных средств, а также при трудностях с синхронизацией или при невозможности инициировать вдох в PSV или IMV режимах. Путем повышения аппаратной ЧДД, приводящего к снижению количества спонтанных вдохов, с помощью ACV режима можно добиться уменьшения работы дыхания пациента. Чрезмерное увеличение количества инициированных вдохов значительно увеличивает цену дыхания. С другой стороны триггер вдоха должен быть достаточно чувствительным, чтобы не приводить к возникновению избыточных усилий при дыхательных попытках, что быстро истощает больного.

    Режим вентиляции с контролем по объему (PRVC) . При этом режиме возможно ограничение чрезмерно высокого пикового давления, приводящего к перерастяжению альвеол. При PCVR создается регулируемый, снижающийся поток на вдохе, который ограничивает пиковое давление, но доставляет установленный объем, в отличие от режима контроля вентиляции по давлению. Стоит отметить, что теоретические преимущества PCVR, не подтвердились рандомизированными исследованиями благоприятного эффекта при данном режиме, за исключением снижения пикового давления.

    Перемежающая принудительная вентиляция (IMV) . Режим IMV был разработан в 1970-х с целью сохранения спонтанного дыхания пациента в дополнение к аппаратному, с заранее заданной минимальной частотой и объемом вдохов. Вначале данный режим использовался для отлучения пациента от вентилятора, обеспечивая плавный переход по сравнению с классическим методом использования Т-переходников. Синхронизированный вариант режима (SIMV) создавался для предотвращения наложения аппаратных вдохов на пик или окончание спонтанного вдоха пациента.

    SIMV продолжает широко использоваться как режим отлучения , и имеет преимущество, выражающееся в ступенчатом снижении частоты аппаратных вдохов и увеличении спонтанных. У пациентов со сниженным комплаенсом, IMV может не обеспечивать достаточный объем спонтанного вдоха из-за сильно ограниченных дыхательных возможностей. В данных условиях поддержка по давлению может быть использована в помощь к каждому вдоху IMV, значительно увеличивая объем спонтанного вдоха и снижая работу дыхания.

    Вентиляция с поддержкой по давлению (PCV) . Режим PSV был разработан в 1980-х как вспомогательный режим вентиляции. Каждый вдох в режиме PSV инициируется дышащим пациентом и поддерживается давлением, с максимальным потоком во время фазы вдоха. Окончание поддержки вдоха происходит в момент ослабления собственного потока вдоха пациента ниже установленного уровня, инициируя спонтанный выдох. В этом заключается отличие принципа переключения фаз вдох-выдох, регулируемого по потоку, от регуляции этого переключения по объему (рис. 60-3). Режим поддержки по давлению не подразумевает заранее установленной частоты аппаратных дыханий, так как каждый вдох должен быть инициирован пациентом. Это делает применение PSV невозможным у пациентов с нейромышечными заболеваниями, при применении мышечных релаксантов и глубокой седации.

    PSV присущи некоторые преимущества , включая улучшение синхронизации пациента с аппаратом , так как ритм дыхания задает сам больной. PSV может обеспечивать минимальную поддержку дыхания перед моментом эксту-бации или значительную (20-40 мм водн. ст.), что означает полное протезирование дыхательной функции пациента и минимальную работу дыхания. Как режим отлучения, поддержка по давлению может использоваться совместно с IMV режимом, как описано выше, или как единственный режим, с постепенным снижением давления поддержки, позволяя пациенту брать на себя больше работы по обеспечению дыхания. У пациентов со сниженными дыхательными резервами, заниженные уровни поддержки давлением могут приводить к неадекватному минутному объему дыхания, что требует постоянного мониторинга частоты и объема дыхания.

    Вентиляция с переключением фаз вдох-выдох

    Вентиляция с переключением фаз вдох-выдох по объему в условиях тяжелого острого респираторного дистресс синдрома (ОРДС) и сниженного легочного комплаенса, может приводит к чрезмерному пиковому давлению или/и высокому объему вдоха в некоторых легочных сегментах, вызвав вторичное респиратор-ассоциированное легочное повреждение. Эти соображения привели к большему использованию режимов вентиляции с переключением фаз вдох-выдох по времени с регулированием по давлению. В этом режиме вентиляции дыхательный объем доставляется с постоянным потоком вплоть до достижения установленного давления. Время аппаратного вдоха устанавливается заранее и не зависит от потока, как в случае вентиляции с контролем по давлению. Контроль по давлению имеет преимущества в виде постоянного ограничения пикового давления, независимо от изменений податливости легких и грудной клетки или десинхронизации с аппаратом ИВЛ.

    Учитывая вышесказанное, это наиболее распространенный и безопасный режим вентиляции в условиях поражения легких, сопровождающихся низкой податливостью, что типично для ОРДС. Как бы то ни было, PCV не очень хорошо переносится пациентами в сознании, что часто требует достаточного уровня седации.

    Вентиляция с измененным соотношением фаз дыхания (IRV ) может быть вариантом вентиляции с контролем по объему или по давлению, но наиболее часто используется при PCV. IRV является современной адаптацией практики прошлого, заключавшейся в удлинении фазы вдоха, результатом чего становилось увеличение остаточной функциональной емкости легких и улучшение газообмена у некоторых больных. Традиционная ИВЛ с использованием соотношения вдох-выдох 1:2 или 1:1,2 подразумевает относительно долгую экспираторную фазу, значительно снижая среднее давление в дыхательных путях. При IRV соотношение фаз обычно составляет от 1,1:1 до 2:1, что может быть достигнуто относительно быстрым инспираторным потоком и его снижением для поддержания достигнутого давления в фазу вдоха.

    При применении IRV возникают два эффекта : а) удлинение времени вдоха ведет к увеличению среднего давления в дыхательных путях и открытию краевых альвеол, схожего результата достигают применением высокого ПДКВ; б) при более тяжелом поражении дыхательных путей, как результат перибронхиального сужения просвета терминальных отделов, с каждым вдохом происходит медленное выравнивание внутрилегочного давления, что приводит к неравномерной альвеолярной вентиляции. Эта неравномерность может стать причиной снижения перфузии альвеол с увеличением внутрилегочного шунтирования крови. При осторожном применении IRV, могут появляться воздушные ловушки, создающие внутреннее или аутоПДКВ, с селективным увеличинием интраальвеолярное давление в таких замкнутых полостях. Такой эффект может сочетаться с увеличением шунтирования и оксигенации. Внутреннее ПДКВ должно часто измеряться по причине возможного перерастяжения альвеол и вторичного респиратор-ассоциированного легочного повреждения.

    Несмотря на привлекательность возможности создания селективного ПДКВ при IRV, остается вопрос, добавляет ли данный эффект что-нибудь новое, помимо простого эффекта повышения среднего давления в дыхательных путях. Исследования, подобные проведенному Lessard, свидетельствуют о том, что вентиляция с контролем по давлению может быть использована для ограничения пикового инспираторного давления и нет значительных преимуществ PCV или PCIRV в сравнении с традиционной объемной ИВЛ с добавлением ПДКВ у пациентов с острой дыхательной недостаточностью. Данная точка зрения в дальнейшем была развита Shanholtz и Brower, которые задались вопросом применения IRV при лечении ОРДС.

    Вентиляция с освободждением давления (APRV)

    В основе APRV лежит режим постоянно положительного давления в дыхательных путях (СРАР). Короткий период более низкого давления позволяет выводить из легких СО2. Пациент имеет возможность дышать самостоятельно во время всего цикла аппаратного дыхания. Теоретическими преимуществами APRV являются более низкое давление в дыхательных путях и минутная вентиляция, мобилизация спавшихся альвеол, более высокий уровень комфорта пациента при спонтанном дыхании и минимальные гемодинами-ческие эффекты. Поскольку пациент сохраняет способность к самостоятельному дыханию благодаря открытому экспираторному клапану, данный режим легко переносится пациентами, отлучаемыми от седации или имеющими положительную динамику после черепно-мозговой травмы. Раннее начало применения данного режима приводит к улучшению гемодинамики и к мобилизации альвеол. К тому же существуют научные данные, доказывающие, что сохранение самостоятельного дыхания при данном режиме вентиляции снижает потребность в седации.

    08.05.2011 44341

    Как-то на одном из профессиональных медицинских форумов поднялся вопрос о режимах ИВЛ. Возникла мысль написать об этом "просто и доступно", т.е. так, чтобы не запутывать читателя в обилии аббревиатур режимов и названий способов вентиляции.

    Тем более, они все очень похожи друг на друга по своей сути и являются ни чем иным, как коммерческим ходом производителей дыхательной аппаратуры.

    Модернизация оснащения машин СМП привела к появлению в них современных респираторов (например, аппарат фирмы Дрегер “Карина”), которые позволяют осуществлять ИВЛ на высоком уровне, с использованием самых разнообразных режимов. Однако ориентация работников СМП в этих режимах часто затруднена и поспособствовать решению этой проблемы в какой-то степени призвана эта статья.

    Я не буду останавливаться на устаревших режимах, напишу лишь о том, что актуально на сегодняшний день, для того, чтобы после прочтения у вас осталась основа, на которую уже будут накладываться дальнейшие познания в этой области.

    Итак, что такое режим ИВЛ? Если по-простому, то режим ИВЛ - это алгоритм управления потоком в дыхательном контуре. Поток может управляться при помощи механики - мех (старые аппараты ИВЛ, типа РО-6) или при помощи т.н. активного клапана (в современных респираторах). Активный клапан требует наличия постоянного потока, что обеспечивается либо компрессором респиратора, либо подводкой сжатого газа.

    Теперь рассмотрим основные принципы формирования искусственного вдоха. Их два (если отбросить устаревшие):
    1) с контролем по объему;
    2) с контролем по давлению.

    Формирование вдоха с контролем по объему : респиратор подает поток в легкие пациента и переключается на выдох при достижении заданного врачом объема вдоха (дыхательного объема).

    Формирование вдоха с контролем по давлению : респиратор подает поток в легкие пациента и переключается на выдох при достижении заданного врачом давления (инспираторного давления).

    Графически это выглядит так:

    А теперь основная классификация режимов ИВЛ, от которой мы будем отталкиваться:

    1. принудительные
    2. принудительно-вспомогательные
    3. вспомогательные

    Принудительные режимы вентиляции

    Суть одна - в дыхательные пути пациента подается заданный врачом МОД (который суммируется из заданных дыхательного объема либо инспираторного давления и частоты вентиляции), любая активность пациента исключается и игнорируется респиратором.

    Различают два основных режима принудительной вентиляции:

    1. вентиляция с контролем по объему
    2. вентиляция с контролем по давлению

    В современных респираторах предусматриваются еще и дополнительные режимы (вентиляция по давлению с гарантированным дыхательным объемом), но мы их в целях упрощения опустим.

    Вентиляция с контролем по объему - Volume Control Ventilation (CMV, VC-CMV, IPPV, VCV и т.д.)
    Врачом задаются: дыхательный объем (в мл), частота вентиляции в минуту, соотношение вдоха и выдоха. Респиратор подает заданный дыхательный объем в легкие пациента и переключается на выдох при его достижении. Выдох происходит пассивно.

    В некоторых вентиляторах (например, дрегеровских Эвитах) при принудительной вентиляции по объему используется переключение на выдох по времени. При этом имеет место следующее. При подаче объема в легкие пациента давление в ДП повышается до тех пор, пока респиратор не даст установленный объем. Появляется пиковое давление (Ppeak или PIP). После этого поток прекращается - возникает давление плато (пологая часть кривой давления). После окончания времени вдоха (Tinsp) начинается выдох.

    Вентиляция с контролем по давлению - Pressure Control Ventilation (PCV, PC-CMV)
    Врачом задаются: инспираторное давление (давление на вдохе) в см вод. ст. или в mbar, частота вентиляции в минуту, соотношение вдоха и выдоха. Респиратор подает поток в легкие пациента до достижения инспираторного давления и переключается на выдох. Выдох происходит пассивно.

    Несколько слов о преимуществах и недостатках различных принципов формирования искусственного вдоха.

    Вентиляция с контролем по объему
    Преимущества:

    1. гарантирован дыхательный объем и, соответственно, минутная вентиляция

    Недостатки:

    1. опасность баротравмы
    2. неравномерность вентиляции различных отделов легких
    3. невозможность адекватной вентиляции при негерметичных ДП

    Вентиляция с контролем по давлению
    Преимущества:

    1. гораздо меньшая опасность баротравмы (при правильно установленных параметрах)
    2. более равномерная вентиляция легких
    3. может использоваться при негерметичности ДП (вентиляция с безманжеточными трубками у детей, например)

    Недостатки:

    1. нет гарантированного дыхательного объема
    2. необходим полный мониторинг вентиляции (SpO2, ETCO2, МОД, КЩС).

    Переходим к следующей группе режимов ИВЛ.

    Принудительно-вспомогательные режимы

    По сути дела, эта группа режимов ИВЛ представлена одним режимом - SIMV (Synchronized Intermittent Mandatory Ventilation - синхронизированная перемежающаяся принудительная вентиляция) и его вариантами. Принцип режима состоит в следующем - врач задает необходимое число принудительных вдохов и параметры для них, но пациенту позволяется при этом дышать самостоятельно, причем число самостоятельных вдохов будет включено в число заданных. Кроме того, слово "синхронизированная" означает, что принудительные вдохи будут включаться в ответ на дыхательную попытку пациента. Если же пациент не будет дышать совсем, то респиратор будет исправно давать ему заданные принудительные вдохи. В тех случаях, когда синхронизация с вдохами пациента отсутствует, режим носит название "IMV" (Intermittent Mandatory Ventilation).

    Как правило, для поддержки самостоятельных вдохов пациента используется режим поддержки давлением (чаще) - PSV (Pressure support ventilation), или объемом (реже) - VSV (Volume support ventilation), но о них мы поговорим ниже.

    Если для формирования аппаратных вдохов пациенту задается принцип вентиляции по объему, то режим называется просто "SIMV" или "VC-SIMV", а если используется принцип вентиляции по давлению, то режим носит название "P-SIMV" или "PC-SIMV".

    В связи с тем, что мы начали говорить о режимах, которые откликаются на дыхательные попытки пациента, следует сказать несколько слов о триггере. Триггер в аппарате ИВЛ - это пусковая схема, включающая вдох в ответ на дыхательную попытку пациента. В современных аппаратах ИВЛ используются следующие виды триггеров:

    1. Триггер по объему (Volume trigger) - он срабатывает на прохождение заданного объема в дыхательные пути пациента
    2. Триггер по давлению (Pressure trigger) - срабатывает на падение давления в дыхательном контуре аппарата
    3. Триггер по потоку (Flow trigger) - реагирует на изменение потока, наиболее распространен в современных респираторах.

    Синхронизированная перемежающаяся принудительная вентиляция с контролем по объему (SIMV, VC-SIMV)
    Врач задает дыхательный объем, частоту принудительных вдохов, соотношение вдоха и выдоха, параметры триггера, при необходимости устанавливает давление или объем поддержки (режим в этом случае будет иметь аббревиатуру "SIMV+PS" или "SIMV+VS"). Пациент получает заданное число вдохов с контролем по объему и при этом может дышать самостоятельно с поддержкой или без нее. При этом на попытку вдоха пациента (изменение потока) сработает триггер и респиратор позволит ему осуществить собственный вдох.

    Синхронизированная перемежающаяся принудительная вентиляция с контролем по давлению (P-SIMV, PC-SIMV)
    Врач задает инспираторное давление, частоту принудительных вдохов, соотношение вдоха и выдоха, параметры триггера, при необходимости устанавливает давление или объем поддержки (режим в этом случае будет иметь аббревиатуру "P-SIMV+PS" или "P-SIMV+VS"). Пациент получает заданное число вдохов с контролем по давлению и при этом может дышать самостоятельно с поддержкой или без нее по тому же принципу, что и описано ранее.

    Я думаю, уже стало понятным, что в отсутствие самостоятельных вдохов пациента, режимы SIMV и P-SIMV превращаются соответственно в принудительную вентиляцию с контролем по объему и принудительную вентиляцию с контролем по давлению, что и делает этот режим универсальным.

    Переходим к рассмотрению вспомогательных режимов вентиляции.

    Вспомогательные режимы

    Как понятно из названия, это группа режимов, задача которых состоит в той или иной поддержке спонтанного дыхания пациента. Строго говоря, это уже не ИВЛ, а ВИВЛ. Следует помнить, что все эти режимы могут применяться только у стабильных пациентов, а никак не у критических больных с нестабильной гемодинамикой, нарушениями КЩС и т.д. Я не буду останавливаться на сложных, т.н. "интеллектуальных" режимах вспомогательной вентиляции, т.к. у каждого уважающего себя производителя дыхательной аппаратуры здесь есть своя "фишка", а мы разберем самые основные режимы ВИВЛ. Если будет желание поговорить о каком-либо конкретном "интеллектуальном" режиме, мы обсудим это все отдельно. Единственное, я отдельно напишу про режим BIPAP, так как он является по сути дела универсальным и требует совершенно отдельного рассмотрения.

    Итак, к вспомогательным режимам относятся:

    1. Поддержка давлением
    2. Поддержка объемом
    3. Постоянное положительное давление в дыхательных путях
    4. Компенсация сопротивления эндотрахеальной/трахеостомической трубки

    При использовании вспомогательных режимов очень полезна опция "Вентиляция апноэ" (Apnoe Ventilation) которая заключается в том, что при отсутствии дыхательной активности ациента в течение заданного времени, респиратор автоматически переключается на принудительную ИВЛ.

    Поддержка давлением - Pressure support ventilation (PSV)
    Суть режима понятна из названия - респиратор осуществляет поддержку спонтанных вдохов пациента положительным давлением на вдохе. Врачом устанавливаются величина давления поддержки (в см Н2О или mbar), параметры триггера. На дыхательную попытку пациента реагирует триггер и респиратор дает заданное давление на вдохе, а затем переключается на выдох. Это режим с успехом может использоваться совместно с SIMV или P-SIMV, о чем я писал ранее, в этом случае спонтанные вдохи пациента будут поддерживаться давлением. Режим PSV широко используется при отлучении от респиратора путем постепенного снижения давления поддержки.

    Поддержка объемом - Volume Support (VS)
    Этот режим реализует т.н. поддержку объемом, т.е. респиратор автоматически устанавливает уровень давления поддержки исходя из заданного врачом дыхательного объема. Режим этот присутствует в некоторых вентиляторах (Servo, Siemens, Inspiration). Врачом задается дыхательный объем поддержки, параметры триггера, передельные параметры вдоха. На инспираторную попытку респиратор дает пациенту заданный дыхательный объем и переключается на выдох.

    Постоянное положительное давление в дыхательных путях - Continuous Positive Airway Pressure (СРАР)
    Это режим спонтанной вентиляции, при котором респиратор поддерживает постоянное положительное давление в дыхательных путях. Собственно, опция поддержания постоянного положительного давления в дыхательных путях очень распространена и может быть использована при любом принудительном, принудительно-вспомогательном или вспомогательном режиме. Ее самый распространенный синоним - положительное давление в конце выдоха - Positive end-expiratory pressure (PEEP) . Если же пациент дышит полностью сам, то с помощью СРАР компенсируется сопротивление шлангов респиратора, пациенту подается согретый и увлажненный воздух с повышенным содержанием кислорода, а также поддерживаются альвеолы в расправленном состоянии; таким образом, этот режим широко используется при отлучении от респиратора. В настройках режима врачом задается уровень положительного давления (в см Н2О или mbar).

    Компенсация сопротивления эндотрахеальной/трахеостомической трубки - Automatic Tube Compensation (АТС) или Tube Resistance Compensation (TRC)
    Этот режим присутствует в некоторых респираторах и призван компенсировать дискомфорт пациента от дыхания через ЭТТ или ТТ. У больного с эндотрахеальной (трахеостомической) трубкой просвет верхних дыхательных путей ограничен ее внутренним диаметром, который значительно меньше, чем диаметр гортани и трахеи. По закону Пуазейля, с уменьшением радиуса просвета трубки резко увеличивается сопротивление. Поэтому во время вспомогательной вентиляции у больных с сохраняющимися самостоятельным дыханием возникает проблема преодоления этого сопротивления, особенно в начале вдоха. Кто не верит, попробуйте подышать некоторое время через взятую в рот "семерку". При использовании этого режима врачом задаются следующие параметры: диаметр трубки, ее характеристики и процент компенсации сопротивления (до 100%). Режим может использоваться в сочетании с другими режимами ВИВЛ.

    Ну и в заключение поговорим о режиме BIPAP (BiPAP), который, как мне кажется, стоит рассмотреть отдельно.

    Вентиляция с двумя фазами положительного давления в дыхательных путях - Biphasic positive airway pressure (BIPAP, BiPAP)

    Название режима и его аббревиатура в свое время были запатентованы фирмой Дрегер. Поэтому, имея в виду BIPAP, мы подразумеваем вентиляцию с двумя фазами положительного давления в дыхательных путях, реализованную в респираторах фирмы Дрегер, а говоря о BiPAP подразумеваем то же самое, но в респираторах других производителей.

    Мы здесь разберем двухфазную вентиляцию так, как она реализована в классическом варианте - в респираторах фирмы Дрегер, поэтому будем пользоваться аббревиатурой "BIPAP".

    Итак, суть вентиляции с двумя фазами положительного давления в дыхательных путях состоит в том, что задается два уровня положительного давления: верхний - CPAP high и нижний - CPAP low, а также два временных интервала time high и time low, соответствующих этим давлениям.

    Во время каждой фазы, при спонтанном дыхании, может состояться несколько дыхательных циклов, это видно на графике. Чтобы вам была понятна суть BIPAP, вспомните, что я писал ранее о СРАР: пациент дышит самостоятельно при определенном уровне постоянного положительного давления в дыхательных путях. А теперь представьте, что респиратор автоматически повышает уровень давления, а затем снова возвращается к исходному и делает это с определенной периодичностью. Вот это и есть BIPAP.

    В зависимости от клинической ситуации длительность, соотношения фаз и уровни давлений могут изменяться.

    Теперь переходим к самому интересному. К универсальности режима BIPAP.

    Ситуация первая. Представьте себе, что у пациента полностью отсутствует дыхательная активность. В этом случае повышение давления в дыхательных путях во вторую фазу будет приводить к принудительной вентиляции по давлению, что графически будет неотличимо от PCV (вспоминайте аббревиатуру).

    Ситуация вторая. Если пациент способен сохранять спонтанное дыхание на нижнем уровне давления (CPAP low), то при повышении его до верхнего будет происходить принудительная вентиляция по давлению, то есть режим будет неотличим от P-SIMV+CPAP.

    Ситуация третья. Пациент способен сохранять спонтанное дыхание как на нижнем, так и на верхнем уровне давления. BIPAP в этих ситуациях работает как истинный BIPAP, показывая все свои преимущества.

    Ситуация четвертая. Если мы установим при спонтанном дыхании пациента одинаковое значение верхнего и нижнего давлений, то BIPAP превратится во что? Правильно, в CPAP.

    Таким образом, режим вентиляции с двумя фазами положительного давления в дыхательных путях является универсальным по своей сути и в зависимости от настроек может работать как принудительный, принудительно-вспомогательный или чисто вспомогательный режим.

    Вот мы и рассмотрели все основные режимы ИВЛ, создав таким образом, основу для дальнейшего накопления знаний по этому вопросу. Сразу хочу заметить, что постичь все это можно только при непосредственной работе с пациентом и респиратором. Кроме того, производителями дыхательной аппаратуры выпускается множество программ-симуляторов, которые позволяют ознакомиться и поработать с каким-либо режимом, не отходя от компьютера.

    Швец А.А. (Граф)

    Министерство образования Российской Федерации

    Пензенский Государственный Университет

    Медицинский Институт

    Кафедра Реанимации и интенсивной терапии

    Зав. кафедрой д.м.н., _____________

    Режимы вентиляции ИВЛ

    Выполнила: студентка V курса ________

    Проверил: к.м.н., доцент______________

    Пенза

    План

    1. Классификация режимов вентиляции

    2. Вентиляция по контролю

    3. Механическая вентиляция

    4. Принудительная вентиляция

    5. Высокочастотная вентиляция

    Литература


    1. Классификация режимов вентиляции

    В отечественной литературе принято делить режимы ИВЛ на две большие группы: а) контролируемую и б) вспомогательную вентиляцию легких.

    Контролируемая ИВЛ – это полная замена функции легких (обеспечение доставки газовой смеси в дыхательные пути) аппаратным дыханием (CMV, AssistCMV).

    Вспомогательная ИВЛ (ВВЛ) – это дополнительная аппаратная вентиляция легких при сохранении спонтанного дыхания.

    Таким образом, при контролируемой ИВЛ больной самостоятельно не дышит, причем если все-таки триггерный механизм используется, то на каждую попытку больного аппарат подает вдох с заданными параметрами (принудительный вдох). При вспомогательной ИВЛ наряду с определенным количеством принудительных вдохов больной имеет возможность дышать самостоятельно, или же аппарат поддерживает самостоятельное дыхание иным образом (PSV).

    В соответствие с другими классификациями, под термином вспомогательная понимают вентиляцию, когда кривая давления на вдохе поднимается выше базовой линии (создается положительное давление в дыхательных путях), т.е. респиратор работает на больного и выполняет хотя бы часть работы дыхания.

    Термины спонтанный или принудительный вдох часто используются для описания способа обеспечения вдоха при проведении вспомогательной вентиляции. При спонтанном дыхании вдох инициируется и заканчивается пациентом. Иногда изменения потока или давления обусловлены характеристиками легких больного. Например, при вентиляции легких с поддержкой давлением (PSV) переключение на выдох осуществляется тогда, когда инспираторный поток снижается до определенного значения в момент, когда пациент собирается закончить инспираторную фазу. Вентилятор фиксирует это и в соответствии со своей программой прекращает доставку газа больному. Реально получается, что именно больной прекращает вдох. Таким образом, вдох с поддержкой давлением считается спонтанным.

    Принудительные вдохи либо инициируются, либо заканчиваются вентилятором. Например, если аппарат прекращает инспираторный поток при доставке определенного объема (вентиляция, контролируемая по объему) или вдох начинается по истечении определенного промежутка времени, этот вдох рассматривается как принудительный.

    Каждый режим вентиляции можно дифференцировать по контролируемому параметру и принципу переключения фаз дыхательного цикла. Например, режим IMV плюс PS следует описать следующим образом:

    Принудительный вдох инициируется по времени, объем/поток управляемый, ограниченный по потоку, а переключение с вдоха на выдох осуществляется по времени;

    Спонтанный вдох является контролируемым по давлению, инициируемым по давлению, с переключение с вдоха на выдох по потоку.

    Данный принцип позволяет охарактеризовать практически все на сегодняшний день используемые режимы вентиляции.

    2. Вентиляция по контролю

    Вентиляция легких с контролем по давлению (РC) требует, чтобы оператор установил максимальное инспираторное давление. Основная цель респиратора в этом случае - достигнуть и удерживать заданное давление в течение определенного времени. Начальный поток газа при этом довольно большой, поскольку респиратор пытается достигнуть заданного давления. Как только цель (заданное давление) достигается, поток газа снижается (убывающий поток). Это происходит до тех пор, пока не закончится инспираторная фаза.

    Инспираторный поток, генерируемый вентилятором, зависит от нескольких факторов. Один из них – выбранный уровень давления. Чем он выше, тем выше градиент давления в дыхательном контуре и, соответственно, скорость потока. Другие факторы включают в себя используемый алгоритм генерирования потока и управления давлением, так же как и легочно-торакальный комплайнс и сопротивление дыхательных путей. Паттерн изменения инспираторного потока в графическом виде представляет собой экспоненциально убывающую кривую. Этот паттерн является результатом уменьшения градиента давления между верхними дыхательными путями и легкими, который возникает одновременно с наполнением легких и выравниванием давления между дыхательным контуром и легочными структурами. Дыхательный объем также зависит от нескольких факторов, главным образом от механических характеристик легких (растяжимость и сопротивление).

    Потенциальными преимуществами вентиляции, контролируемой по давлению, по сравнению с обычными объемными методами являются:

    Более быстрый поток на вдохе, который обеспечивает лучшую синхронизацию с аппаратом и снижение тем самым работы дыхания;

    Раннее максимальное раздувание альвеол, обеспечивающее лучший газообмен;

    Лучшее расправление ранее ателектазированных альвеол;

    Возможность использования в условиях негерметичного контура;

    Профилактика баротравмы при ИВЛ.

    Вентиляция легких, контролируемая по давлению, иногда используется с обратным отношением времени вдоха и выдоха (PC-IRV). В некоторых ситуациях (ОПЛ) использование инвертируемого отношения вдоха к выдоху приводит к улучшению газообмена, по-видимому, за счет улучшения распределения вентиляции и расправления коллабированных альвеол на фоне более высокого среднего давления

    При проведении вентиляции с контролем по объему (VС) требуется, чтобы оператор установил заданный дыхательный объем. Обычно также устанавливается частота дыхательных циклов, время вдоха и поток (включая форму потока). При использовании этого режима давление в дыхательных путях зависит в первую очередь от механических характеристик легких больного. Объем, подаваемый в легкие, обычно остается постоянным. Поэтому такую вентиляцию выгодно использовать, когда важно обеспечить стабильный V T и РСО 2 . Принципиальным недостатком объемной вентиляции является возможность развития высокого пикового альвеолярного давления и регионального перерастяжения легких.

    Хотя имеется достаточно много сведений относительно возможных преимуществ режима с контролем по давлению (особенно при тяжелом паренхиматозном повреждении) перед вентиляцией, контролируемой по объему, доказательств о влиянии выбора режима на исход лечения на сегодняшний день нет. Большинство больных могут равноценно вентилироваться с использованием как одного, так и другого режима, если непрерывно мониторируется такой показатель, как пиковое альвеолярное давление (давление плато), V E , синхронизация дыхания больного и работы вентилятора, газовый состав крови и др.

    При объемной вентиляции также можно использовать инвертированное соотношение вдоха к выдоху, причем удлинение инспираторной фазы можно обеспечивать за счет либо замедления потока, либо установки паузы вдоха. Среднее давление за дыхательный цикл при этом может существенно различаться. На среднее и пиковое давление в дыхательных путях оказывает влияние также и форма потока в инспираторную фазу (рампообразная, прямоугольная и др.).

    Некоторые респираторы предлагают возможность проводить вентиляцию с периодической подачей (1 на 100 принудительных вдохов) увеличенного вдоха (sighvolume). Мнения об использовании такого маневра противоречивые. Периодическая подача большого дыхательного вдоха может приводить к расправлению ателектазов и в то же время к созданию нежелательного высокого пикового альвеолярного давления.

    3. Механическая вентиляция

    Контролируемаямеханическаявентиляциялегких (Controlled Mechanical Ventilation или Continuous mandatory ventilation - CMV). Под этим термином понимают постоянную принудительную вентиляцию, контролируемую по объему (поток/время), с дыхательным циклом, инициируемым по времени. Традиционно, используя аббревиатуру СМV, чаще подразумевают именно объемную вентиляцию, хотя постоянная принудительная вентиляция может проводиться и в варианте с контролем по давлению (СМV-PC).

    Дыхание больного в этой ситуации полностью контролируется вентилятором, поэтому сам пациент не может инициировать работу респиратора. В зависимости от производителей и типа респиратора этот режим может называться по-разному - "вентиляция, контролируемая по объему", "постоянная принудительная вентиляция легких", "контролируемый режим" и др.

    Контролируемая механическая вентиляция легких не гарантирует, что пациент не попытается самостоятельно дышать. Однако вентилятор не будет отвечать на попытки больного, так как чувствительность его отключена. В такой ситуации паттерн вентиляции становится ассинхронным: больной пытается сделать вдохов больше, чем вентилятор их обеспечивает. Невозможность получить вдох по требованию ведет к беспокойству больного, задержке углекислого газа, увеличению работы дыхания. Поэтому большинство современных респираторов при проведении принудительной объемной вентиляции все же предусматривает использование триггерного механизма.

    Вспомогательная/контролируемая механическая вентиляция (AssistCMV). Этот режим характеризуется как постоянная принудительная вентиляция, контролируемая по объему, триггерируемая по давлению (по потоку) или по времени, с переключением фаз дыхательного цикла по времени (объему). Минимально необходимая частота и дыхательный объем в этом режиме задаются оператором. Инспираторная фаза инициируется больным, причем на каждую попытку подается заданный дыхательный объем. При отсутствии самостоятельных попыток больного аппарат подает заданное количество аппаратных вдохов ("триггерируемых по времени"). Единственная разница между CMV и AssistCMV в том, что оператор должен установить чувствительность триггера легких.

    «Pressure support ventilation» «PSV»

    Тайна имени:

    Вентиляция с поддержкой давлением. Слово «поддержка» (support) означает, что аппарат ИВЛ поддерживает спонтанный вдох пациента.

    Определение понятия:

    В режиме «PSV» аппарат ИВЛ в ответ на дыхательную попытку пациента поднимает давление в дыхательном контуре до предписанного уровня, поддерживает давление вдоха на заданном уровне в течение всего вдоха и переключается на выдох при уменьшении потока до установленного уровня. В режиме «PSV» все вдохи спонтанные (начаты и завершены пациентом).

    Описание режима

      Паттерн ИВЛ: PC-CSV Pressure controlled continuous spontaneous ventilation.

      Управляемый параметр для режима «PSV» единственный – это давление (Pressure controlled ventilation)

    Фазовые переменные

    1. Триггер: В режиме «PSV» всегда используется только patient trigger, то есть пациент сам начинает вдох. Чаще всего это flow-trigger или pressure-trigger. На аппарате Dräger Babylog используется volume trigger.
    2. Предельные параметры вдоха (Limit variable): При управлении вдохом по давлению аппарат ИВЛ строго выдерживает предписанное давление в дыхательных путях, т.е. предел давления уже задан по факту применения данного способа управления вдохом. Другие пределы не устанавливаются.

      Переключение с вдоха на выдох (Cycle Variables): В режиме «PSV» переключение с вдоха на выдох выполняется «по потоку» (flow cycling). Поток начинается с высоких значений и снижается по экспоненте. Переключение с вдоха на выдох происходит при значительном снижении потока. Обычно порог переключения с вдоха на выдох составляет 25% от максимального потока. Создатели аппаратов ИВЛ устанавливают порог переключения с вдоха на выдох «по потоку» выше нуля для того, чтобы не допустить несоразмерного удлинения времени вдоха. Это позволяет избежать десинхронизации. На некоторых моделях аппаратов ИВЛ предусмотрена возможность коррекции порогового значения потока. Дополнительные параметры переключения на выдох – это время и давление. Это сделано для безопасности пациента. В большинстве случаев эти параметры прописаны в программном обеспечении аппарата ИВЛ и при настройке режима устанавливаются автоматически. При «PSV» максимальное возможное время вдоха обычно не превышает 3 секунды. Это позволяет аппарату ИВЛ переключаться на выдох если критерий переключения по потку не работает. При значительных утечках (масочная ИВЛ или трубки без герметизирующих манжеток) порог переключения по потоку может быть доведен до 5 L/min и труднодостижим. Переключение по давлению происходит, если давление в дыхательном контуре превысит установленный уровень поддержки на 1,5 мбар

      Выдох: Параметры выдоха определяются уровнем РЕЕР.

    Условные переменные: Условными переменными являются дополнительные параметры переключения на выдох

    Принцип управления - setpoint

    Другие имена режима

    «Inspiratory assist» («IA»).

    «Inspiratory pressure support» («IPS»).

    «Spontaneous pressure support» («SPS»).

    «Inspiratory flow assist» («IFA»).

    «Assisted spontaneous breathing» («ASB»)

    Необходимая ремарка: На некоторых аппаратах ИВЛ (например «PB7200») режим «PSV» устанавливается после включения «CPAP». На панели управления аппарата горит светодиод, показывающий, что активизирован «CPAP». Если не заметить сигнал светодиода «Pressure support on», можно подумать, что пациент уже переведен на спонтанное дыхание.

    Таким образом, в режиме «PSV» частота дыханий, длительность вдоха и дыхательный объём определяются дыхательной активностью пациента. По определению все вдохи в режиме «PSV» самостоятельные (spontaneous), однако, поскольку инспираторное давление выше уровня baseline pressure, все вдохи выполняются с поддержкой давлением (pressure supported).

    Отличие от режима «CPAP»: В «CPAP» во время вдоха давление в дыхательных путях остается на уровне baseline pressure. При «PSV» во время вдоха аппарат ИВЛ поднимает давление в дыхательных путях до предписанного уровня и поддерживает до начала выдоха.

    Пример № 1:

    «PSV» на аппаратах фирмы Dräger называется «Assisted spontaneous breathing» («ASB»)

    1. Устанавливают уровень «СРАР». Это значит, что если инспираторная попытка пациента слабая и не распознана триггером аппарата ИВЛ, вдох будет происходить как в «СРАР».
    2. Устанавливают уровень давления поддержки вдоха. (PASB) То есть, до какого уровня аппарат ИВЛ поднимет давление в дыхательных путях пациента, когда сработает триггер.
    3. Устанавливают чувствительность Flowtrigger (потокового триггера).
    4. На аппаратах серии EVITA есть дополнительный триггер, срабатывающий по объёму (для взрослых – 25 мл для детей 12мл). Чувствительность этого триггера постоянная, он включен в управляющую программу.
    5. Устанавливают скорость достижения уровня давления поддержки (От 64 миллисекунд до 2 секунд.). По-английски называется Time ramp* или Tramp. Чем выше скорость (меньше время), тем круче график давления. Если установлена высокая скорость подъёма, аппарат ИВЛ начинает поддержку вдоха высоким пиковым потоком. Для того, чтобы скорость подъёма давления была небольшой, а график давления пологим, аппарат ИВЛ для поддержки вдоха использует меньший поток.

    Соответственно, чем меньше поток, тем большее усилие прикладывает пациент, чтобы вдохнуть тот же объём. Быстрое достижение предписанного уровня давления поддержки называется fast rise, а медленное – slow rise.

    *Перевод английского слова ramp – наклонная плоскость соединяющая две горизонтальные поверхности. При рассмотрении графиков давления этот термин используют для названия наклонного отрезка. На представленном графике давления Ramp – это отрезок кривой, описывающей изменение давления при переходе с нижнего уровня давления на верхний.

      На аппаратах ИВЛ серии EVITA поток задается автоматически в соответствии с установленным временем Tramp и инспираторным усилием пациента.

      Для тренировки дыхательной мускулатуры пациента в ходе подготовки к прекращению ИВЛ используют постепенное снижение давления поддержки и увеличение Tramp.

    • когда поток снижается до 25% от максимального
    • если время вдоха превысит 4сек
    • если пациент сам начнёт выдох

    второй и третий способы прекращения вдоха «аварийные», и при их троекратном повторении включается тревога. При правильных настройках режима и хорошей синхронизации переключение на выдох выполняется по потоку.

    Приводимая ниже схема из инструкции к аппаратам ИВЛ серии EVITA показывает условное деление вдоха на две фазы. В первой фазе достигается давление поддержки, а во второй поддержка длится до снижения потока до 25%. Длительность первой фазы - Tramp

    Пример № 2:

    На аппаратах Servo-i и Servo-s фирмы MAQUET этот режим называется «PSV» «Pressure support ventilation», как на большинстве современных аппаратов ИВЛ.

    На панели управления аппарата обозначен как «Pressure support/ СРАР»

    1. Устанавливают уровень «PEEP».
    2. Устанавливают уровень давления поддержки вдоха от уровня РЕЕР. (PS above PEEP) То есть, до какого уровня аппарат ИВЛ поднимет давление в дыхательных путях пациента, когда сработает триггер.
    3. Устанавливают чувствительность триггера. Производители аппаратов Servo-i и Servo-s рекомендуют Flowtrigger (потоковый триггер). На этих аппаратах устанавливают чувствительность потокового триггера в процентах от базового потока (flow by). Предусмотрена возможность использования триггера срабатывающего по давлению, чувствительность в см H2 O.
    4. Устанавливают скорость достижения уровня давления поддержки. По английски называется Inspiratory rise time. Чем выше скорость (меньше время), тем круче график давления. Если установлена высокая скорость подъёма, аппарат ИВЛ начинает поддержку вдоха высоким пиковым потоком. Для того чтобы скорость подъёма давления была меньше увеличивают Inspiratory rise time (время достижения уровня давления поддержки). Как и в предыдущем примере, врач задает аппарату временной отрезок в секундах*, а аппарат сам устанавливает величину потока для выполнения поставленной задачи.
    5. Поддержка вдоха прекращается и начинается выдох:
    • когда поток снижается до заданного уровня в процентах от максимального
    • если время вдоха превысит 2,5 сек для взрослых и 1,5 сек для детей
    • если давление на вдохе превысит границу alarm (тревога)
    • если давление на вдохе превысит заданное давление поддержки на 3 см H2 O или 10% от максимальной величины потока
    • если пациент сам начнёт выдох

    Все способы прекращения вдоха, кроме первого «аварийные». При правильных настройках режима и хорошей синхронизации переключение на выдох выполняется по потоку. На этих аппаратах ИВЛ величина потока для переключения на выдох в процентах от максимального может быть установлена от 70% до 10%. При настройке «по умолчанию» аппарат задаёт 30%.

    • Inspiratory rise time задаётся в сек в режимах «Pressure support/ СРАР», «Volume support» и «Bi-vent», а в «PCV» как % от длительности дыхательного цикла.

    Пример № 3:

    Аппарат ИВЛ «Puritan Bennet 7200» - ветеран, работающий во многих клиниках, хотя уже снят с производства. Режим «Pressure support ventilation» можно активировать как дополнительную опцию при включённом режиме «СРАР». Давление поддержки включается через pressure trigger или flow trigger. Переключение на выдох происходит при снижении потока до 5 л/мин. Врач может настраивать только чувствительность триггера, величину давления поддержки и РЕЕР.

    На аппаратах ИВЛ «Puritan Bennet» 740, 760 и 840 «Pressure support ventilation» представлен на панели управления как отдельный режим. Триггеры - pressure и flow. Скорость перехода с уровня РЕЕР на уровень давления поддержки задаётся с помощью коэффициента или множителя (factor), выраженного в процентах. По-английски называется PS Rise Time Factor или Flow acceleration factor (ускорение потока). Главное запомнить, чем больше этот коэффициент, тем круче подъём кривой давления. Выбор от 1% до 100%. При настройке режима аппарат предлагает выбрать 50%. В инструкции к «РВ-840» на русском языке этот коэффициент назван так: «процент времени роста». Тоже красиво. Переключение на выдох можно задать при снижении потока от 1% до 80% от максимального. Аппарат предлагает выбрать 25%.

    Режим ИВЛ «PSV» хорошо переносится пациентами. Широко используется в ходе прекращения респираторной поддержки (weaning). Важно помнить, что если режим настроен хорошо, пациент получает целевой дыхательный объём.

    Если не изменить настройки режима, когда активность пациента растет и инспираторное усилие увеличивается, аппарат будет оказывать избыточную поддержку, что может приводить к неоправданному увеличению дыхательного объёма. Следствием будет гипервентиляция и угнетение дыхательного центра.

    Уровень поддержки должен быть увеличен, когда пациент утомляется и инспираторное усилие снижается, и если растет сопротивление дыхательных путей или снижается комплайнс.

    Правильная установка уровня тревог по дыхательному и минутному объёмам позволит вовремя выполнить коррекцию настроек режима.

    Важно! Для безопасной ИВЛ в режиме «PS» у пациента должна быть сохранной функция дыхательного центра! Поскольку мы должны быть готовы к ухудшению состояния, не пренебрегайте опцией «apnoe ventilation»!